Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Study

Dr. Ilkka Rytöluoto, Mikael Ritamäki & Kari Lahti
Tampere University of Technology (TUT)
Laboratory of Electrical Energy Engineering (EEE)
Finland

Contact author: ilkka.rytoluoto@tut.fi
Outline

1. Motivation and background
2. Materials and sample preparation
3. Methods and main results
 - Dielectric breakdown strength
 - Dielectric spectroscopy
 - Thermally stimulated depolarization current
 - DC conductivity
4. Conclusions
1. Motivation and background
2. Materials and sample preparation
3. Methods and main results
 - Dielectric breakdown strength
 - Dielectric spectroscopy
 - Thermally stimulated depolarization current
 - DC conductivity
4. Conclusions
Motivation and background

GRIDABLE, a EU Horizon 2020 project:
“Plastic nanocomposite insulation material enabling reliable integration of renewables and DC storage technologies in the AC energy grid”

Target:
To connect renewable energy sources to the energy grid in a more efficient way through innovative polypropylene (PP) nanocomposites that aim to improve reliability at operating voltages in DC cable insulation and in power capacitors.

Consortium:
Motivation and background

Biaxially oriented polypropylene (BOPP) in film capacitors:

- Current state-of-the-art dielectric medium in both high-energy metallized film capacitors and oil-impregnated film-foil capacitors.
- Superior dielectric strength (small-area DC DBS ~700 V/µm), very low dielectric loss (\(\tan \delta < 2 \times 10^{-4}\)) and excellent self-healing breakdown capability in metallized form.

Capacitor BOPP today:

- High-isotactic base PP with optimized molecular weight distribution and stabilization
- Minimum residual catalyst and impurity contents
- Film thickness homogeneity, controlled surface roughness, optimized heat shrinkage etc.
- Film thicknesses to date can reach <2 µm!

The purpose of this study:
Short-term reliability evaluation of state-of-the-art BOPP capacitor films for reference purposes of the GRIDABLE project.
1. Motivation and background
2. Materials and sample preparation
3. Methods and main results
 - Dielectric breakdown strength
 - Dielectric spectroscopy
 - Thermally stimulated depolarization current
 - DC conductivity
4. Conclusions
Film specifications

Two types of commercial tenter BOPP films were studied:

- Non-metallized (base) films; 5 µm & 10 µm
- Zn-Al metallized films; 5 µm & 10 µm

All films manufactured using the same base polymer (a capacitor-grade iPP homopolymer with high purity and low ash content).

Properties (10 µm base film):

- Melting temperature T_m of ~ 167.9 °C
- Glass-transition temperature T_g of approx. -5.4 °C
- Initial crystallinity X_{DSC} of ~ 61 % (α-form)
- Smooth film surfaces with shallow crater-like structures (mean area surface roughness ~ 24 nm)
Electrode preparation

For dielectric spectroscopy, conductivity and TSDC measurements:

- Electrodes (⌀ 22 mm) were deposited on both sides of the sample films by e-beam evaporator inside a clean room facility:
- Deposited materials: **Ni + Au (10+100 nm)** or **Al (100 nm)**
- Samples were short-circuited and stored in vacuumed desiccator for several days prior to electrical measurements.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Rate (nm/s)</th>
<th>P (mbar)</th>
<th>Current (mA)</th>
<th>Voltage (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>0.05</td>
<td>< 1×10^{-6}</td>
<td>~59</td>
<td>10</td>
</tr>
<tr>
<td>Au</td>
<td>0.2</td>
<td>< 1×10^{-6}</td>
<td>~150</td>
<td>10</td>
</tr>
<tr>
<td>Al</td>
<td>0.15</td>
<td>< 1×10^{-6}</td>
<td>~85</td>
<td>10</td>
</tr>
</tbody>
</table>

Distance between source and substrate: ~50 cm
1. Motivation and background
2. Materials and sample preparation
3. Methods and main results
 - Dielectric breakdown strength
 - Dielectric spectroscopy
 - Thermally stimulated depolarization current
 - DC conductivity
4. Conclusions
Experimental methods

1. Dielectric breakdown strength
 - Voltage form (DC, AC)
 - Area-dependence
 - Temperature dependence

2. Dielectric permittivity and loss
 - Frequency, temperature and field* dependence

3. Thermally stimulated depolarization current
 - High field, high temperature

4. DC conductivity
 - Temperature and field dependence

* Not presented here
Dielectric breakdown strength: Measurement specifications

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Voltage form</th>
<th>T (°C)</th>
<th>Active area (cm²)</th>
<th>N</th>
<th>Total film area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Large-area multi-breakdown</td>
<td>DC</td>
<td>RT</td>
<td>81</td>
<td>20</td>
<td>1620</td>
</tr>
<tr>
<td>1</td>
<td>Large-area multi-breakdown</td>
<td>DC</td>
<td>100</td>
<td>81</td>
<td>6</td>
<td>486</td>
</tr>
<tr>
<td>2a</td>
<td>Small-area single-breakdown</td>
<td>DC</td>
<td>RT</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2b</td>
<td>Small-area single-breakdown</td>
<td>AC</td>
<td>RT</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

RT (room temperature conditions): $T = 23.7^\circ C \pm 0.6^\circ C$, RH = 33.5% $\pm 10.7%$

Extensive short-term breakdown strength characterization was made:

- Large-area self-healing breakdown measurement using metallized films as electrodes\(^1\).
- Conventional small-area single-breakdown measurement according to IEC-60243.

Dielectric breakdown strength: Weibull results

- DC breakdown strengths (Weibull $\alpha = 650–770$ V/µm) in similar or higher range in comparison to literature values for high-quality BOPP.

- Some weak points observed for the non-metallized films (100-400 V/µm range).

- At 100 °C: Approx. 13–20 % decrease in DC breakdown strength.

- Small-area AC breakdown strength data (peak AC voltage) in similar or slightly lower range in comparison to the DC data—consistent with literature on thin films.

Shaded areas: 90 % confidence bounds

Relative permittivity and dielectric loss

Relative permittivity:
- In the expectable range for BOPP (2.2–2.3 at RT, 1 kHz).
- Slight decrease (~5 %) with increasing temperature (from −50 °C to 100 °C).

Dielectric loss:
- Very low dielectric loss characteristics ($\tan \delta < 2 \times 10^{-4}$ at room temperature, 1 kHz).
- Broad relaxation peak above glass transition temperature (−5 °C to 60 °C).
- An increase of $\tan \delta$ at low frequencies and high temperature → Release of trapped charge; increase of DC conductivity...

Charge originates from the electrode evaporation process? Difficult to remove…

Inset: Room temperature conditions
Thermally stimulated depolarization current (TSDC): Procedure

Procedure:

1. Sample is heated ($T_p = 80 \, ^\circ C$).
2. DC voltage is applied for $t_p = 40 \, \text{min}$ (charging).
3. Temperature is rapidly decreased to $T_0 = -50 \, ^\circ C$ (voltage still on).
4. Voltage is removed, sample is short-circuited.
5. Linear heating at $\beta=3 \, ^\circ C/\text{min}$.

TSDC is a useful technique for studying charge storage and decay processes in dielectrics. Information on e.g. charge trap depth and density distributions.

Diagram:

- **Voltage on:** $U_p = 1000 \, \text{V}$, $t_p = 40 \, \text{min}$
- **Current:** $100 \, \text{V/\mu m}$
- **Temperature:** $T_p = 80 \, ^\circ C$
- **Cooling:** $dT/dt = -15 \, ^\circ C/\text{min}$
- **Linear heating:** $dT/dt = +3.0 \, ^\circ C/\text{min}$
- **$T_{max} \approx 125 \, ^\circ C$**

Measurement of TSDC
Thermally stimulated depolarization current (TSDC): Results

Shallow traps were observed in the ~0.75 eV range, and deep traps were observed in the ~1.08 eV range.

- Impurity states?
- TSC intensity in the shallow trap region was relatively low in proportion to the strong peak in the high-temperature region (deep traps).
- Space charge effects (deep traps) were observed in the high temperature region (anomalous TSDC).

DC conductivity: Measurements

- Temperature 30–100 °C
- DC fields of 30–250 V/µm
- Poling time 20–24 h

At each temperature, the sample was subjected to progressively increasing electric field. The sample was let to relax at the set temperature between each electric field application.
DC conductivity: Results

After 20–24 h of poling at each E-field:

- Conductivity in the $10^{-16}...10^{-17}$ S/m range.
- No clear dependence on electric field in the range studied (up to 200 V/µm). Rather, a slowly decreasing and saturating trend was observed.

Low shallow trap density + large amount of deep traps \rightarrow Suppression of charge hopping between shallow traps and blocking of further charge injection due to formation of homocharge layer near BOPP-electrode interface?
Conclusions

- Short-term reliability and dielectric properties of commercial capacitor BOPP films were thoroughly characterized for reference purposes of GRIDABLE project.

- Overall, the studied BOPP films exhibited very high short-term dielectric performance:
 - High dielectric strength
 - Low dielectric loss
 - Low conductivity

- Further studies are needed to elucidate the role of electrodes and charge trapping in the observed dielectric phenomena.
Thank you!

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 720858.